
SAMSUNG OPEN SOURCE CONFERENCE 2019

SOSCON
Method of NUMA-Aware Resource Management for
Kubernetes 5G NFV Cluster

Samsung Electronics | Samsung Research | Byonggon Chun
10.16, 2019

SOSCON 2019 BIO

Byonggon Chun

Projects Details

Tizen
(2015~2016)

Tizen Web-Device API development

Iotivity
(2016~2017)

Iotivity development based on OCF 1.0 spec
(Endpoint, Smarthome, etc)

Edge Computing
(2017~2018)

Factory Edge Computing PoC
(Based on EdgeX, DDS)

FaaS based Home Edge Computing PoC
(Based on Greengrass Core, OSS FaaS, etc)

5G MEC
(2018~2019)

5G MEC PoC
(Based on LF Akraino, Openstak-helm, ETSI MEC Standard)

Container-based
NFV Infra
(2019~)

NUMA-aware Resource Manager for CNF(PoC)
(CPU, Memory, Hugepages)

Opensource Contribution~
(Kubernetes, Docker, Containerd)

SAMSUNG OPEN SOURCE CONFERENCE 2019

SOSCON 2019

Background
Deep dive into Kubernetes at the node level
How Kubernetes supports NUMA
Kubernetes Contribution

01
02
03
04

Agenda

SOSCON 2019 Background

Major benefits of Network Function Containerization

• Faster startup speed(quick to deploy)

• Lower performance overhead(no overhead from guest kernel)

Cyclictest Benchmark with generic kernel

 VM Docker Native

6532

391

90

39 38 S
ta

rt
u
p
 t

im
e
 i
n
 m

s

App

GuestOS

 VM Docker Native

39422

13 8

La
te

n
cy

 i
n
 u

S
e
c

Startup Benchmark with generic kernel

Cyclictest Benchmark source: Minimizing Latency of Real-Time Container Cloud for Software Radio Access Networks, IEEE CloudCom, 2015

SOSCON 2019 Background

Virtual Machine vs Container

Host Kernel

Hypervisor
(KVM/QEMU)

 Guest Kernel

Bins/Libs

User Apps

Host Kernel

Container Runtime
(namespaces/cgroups)

VM Container

Difference between VM and Container

• Q. So…is Container a new kind of Virtual Machine without kernel emulating?

• A. Nope, you should know about “Linux namespaces” and “Linux control groups”.

 Guest Kernel

Bins/Libs

User Apps

SOSCON 2019 Background

What is Container?

• The concept of container is lightweight mechanism to provide isolated environment.

• Processes are “isolated by linux namespaces”.

• The resource usage is “restricted by linux cgroup”.

• So the most of containers share host kernel.

• Sometimes containers running on the isolated kernel similar to virtual machine.

(kata-runtime, gvisor, etc)

Host Kernel

Host Space

The fundamental concept of container

Isolated Space

Processes Processes

Container

SOSCON 2019 Deep dive into Kuburnetes at the node level

The structure of Kubernetes is straightforward.

• Kubernetes consists of master components(APIs, scheduler, etc)

and node components(kubelet, container-runtime, mandatory-services).

Overall architecture of Kubernetes

API Server etcd Scheduler Controller Manager

Master

Kubelet Proxy

Node

Pod

Pod

Pod

Pod

Kubelet Proxy

Node

Pod

Pod

Pod

Pod

…

SOSCON 2019 Deep dive into Kuburnetes at the node level

Let’s tear down Pod.

• Pod is usually known as the basic execution unit or smallest deployable unit in Kubernetes.

• Let’s see the Pod at the point of namespaces and cgroup.

The concept of Pod

Pod

Infra Container

Container foo

Container goo

Container hoo

provide
network, ipc
namespaces
for containers

pod-cgroup
├── container-foo-cgroup
│ └── control-files
├── container-goo-cgroup
│ └── control-files
├── container-hoo-cgroup
│ └── control-files
├── infra-container-cgroup
│ └── control-files
└── control-files Reousce limits

are set on
cgroup.

SOSCON 2019

Deep dive into Kuburnetes at the node level

• Kubelet communicates with container runtimes over CRI.

• CRI is developed for loosely coupled structure between kubelet and container runtimes.

(But Kubelet still communicates with docker over dockershim which is part of kubelet)

• CRI offers set of gRPC APIs and protobuf messages for pod/container lifecycle management.

(CRI runtime runs CRI runtime service server, kubelet is client)

Let’s talk about kubelet and container runtime.

source: Kubernetes Blog, Introducing Container Runtime Interface (CRI) in Kubernetes

CRI Runtime Kubelet
GRPC/CRI

RunPodSandbox
CreateContainer
StartContainer
...

Docker,
containerd,
CRI-O
…

The concept of CRI

SOSCON 2019 Deep dive into Kuburnetes at the node level

What is OCI and OCI compliant runtime?

source: OCI Runtime Specification

• OCI(Open Container Initiative) offers “image-spec” and “runtime-spec” as open industry standards.

• Image-spec specifies image format for “OCI Runtime bundle” which is set of files.

• Runtime-spec defines the concept of runtime bundle and configuration & lifecycle of a container.

• OCI compliant runtime means runtime which can run “OCI Runtime bundle”.

(opencontainers/runc is known as the iconic OCI runtime and reference implementation.)

The concept of OCI image spec and runtime spec

OCI Runtime bundle OCI Image OCI Container

Extraction Execution

SOSCON 2019

Deep dive into Kuburnetes at the node level

Now we can draw clear picture with CRI and OCI runtime.

CRI Runtime Kubelet
CRI

Lifecycle related CRI APIs and OCI Runtime event

OCI Runtime
OCI

RunPodSandbox,
CreateContainer,
UpdateContainerResources,
StartContainer,
StopContainer,
RemoveContainer,
StopPodSandbox,
RemovePodSandbox,
…

State,
Create,
Start,
Kill,
Delete

source: Container Runtime Interface, OCI Runtime Specification

OCI Container

SOSCON 2019

Deep dive into Kuburnetes at the node level

Now we can draw clear picture with CRI and OCI runtime.

CRI Runtime Kubelet
CRI

List of CRI and OCI Runtimes

OCI Runtime
OCI

docker,
containerd,
CRI-O,
rkt,
frakti,
singularity-cri,
…

runc,
crun,
gVisor,
kata-runtimes,
nabula,
firecracker-runtime,
singularity,
…

OCI Container

SOSCON 2019

Deep dive into Kuburnetes at the node level

But in the real world, there is a “shim”.

Kubelet/dockershim dockerd/containerd runc

CRI-plugin/Containerd Kubelet runc

containerd-shim-v2

containerd-shim-v2

CRI-O Kubelet runc

CRI

CRI

CRI

3 ways to runc

OCI

OCI

OCI

shim

shim

SOSCON 2019

Deep dive into Kuburnetes at the node level

But in the real world, there is a “shim”.

CRI-plugin/Containerd Kubelet containerd-shim-v2

CRI-O Kubelet Kata-runtime

CRI

CRI

OCI

OCI
containerd-shim-v2

Kata-runtime

2 ways to Kata-runtime

shim

shim

SOSCON 2019

Deep dive into Kuburnetes at the node level

Do we have to know all of this for resource management?

CRI Runtime Kubelet
CRI

Sequence of pod and container creation

OCI Runtime
OCI

Create a Pod level
cgroup, then set
resource restriction
for a pod.

OCI Container

Create a container
level cgroup, then
set resource
restriction for a
container. Lastly, run
container on
dedicated cgroup.

• It is required to know how to manage resources at the low level.

(to use Node Allocatable Feature, and Resource Managers in Kubernetes like CPU manager.)

• It is required to know to run hardware accelerated application like DPDK with low level resource management.

• In the case of kata-container with KVM/QEMU, the way to manage resources is little bit different.

SOSCON 2019 How Kubernetes supports NUMA

What is NUMA?

• NUMA(Non-Uniform Memory Access) is modern style architecture for multi processors.

• Each socket(NUMA node) has own CPU Processor, Memory, PCI Devices.

(Typically, one socket equal to one NUMA node.)

• Processor is able to access remote memory and I/O devices on other sockets.

(But the remote access of resources shows performance decrement)

Typical 2 sockets configuration of Intel Xeon

CPU CPU

3 x PCIe(16x) 3 x PCIe(16x)

UPI

6 x DDR4 6 x DDR4

SOSCON 2019 How Kubernetes supports NUMA

When NUMA aware resource allocation is required?

• NUMA aware resource allocation should be made for following applications.

• Latency-sensitive applications such as real-time AR/VR and game streaming.

• Hardware acceleration based applications such as DPDK and CUDA.

Socket 0 Socket 1

136

194

L
a
te

n
cy

 i
n
 n

S
e
c

DPDK l2fwd Throughput with 10Gbps NIC

(Intel Xeon Scalable Gold 6148)

Memory access latency from socket 0

(Intel Xeon E7-4800)

aligned misaligned

9.9
7.9

T
h
ro

u
g
h
p
u
t

in
 G

b
p
s

Latency test source: Memory Latencies on Intel® Xeon® Processor E5-4600 and E7-4800 product families, Intel

SOSCON 2019 How Kubernetes supports NUMA

CPU Pinning in Kubernetes

• CPU pinning allows exclusive usage of CPUs for process or thread.

• CPU Manager in Kubernetes responsible for allocating logical threads(SMT) to containers.

(CPU Manager attempts to allocate sibling threads to containers, when siblings are available.)

• CPU Manager allocates exclusive CPUs using CPUSET cgroup controller.

(It is possible to adjust container’s cpu affinity at thread level by “sched_setaffintiy”.)

• Alternative(Intel CMK) also available.

(Both solutions and NTM are contributed by Intel.)

Comparison between CPU Manager and Intel CMK

Solution Part of
Kubelet

Approach Allowed
CPUSET

NUMA Support Node Allocatable
Feature

Node Topology
Manager

CPU Manager Yes cgroup
(CPUSET)

Allocated CPUs
only

CPU, I/O Devices, etc
over NTM

supported supported

Intel CMK No(Plugin) sched_setaffinity
subprocess

Entire CPUs on
machine

CPU Only Not supported Not supported

SOSCON 2019 How Kubernetes supports NUMA

How it Works: CPU Manager

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-sample
spec:
 containers:
 - image: dpdk-sample
 name: simple-l2fwd
 resources:
 requests:
 cpu: "4"
 memory: "1Gi"
 hugepages-1Gi: "2Gi"
 limits:
 cpu: "4"
 memory: "1Gi"
 hugepages-1Gi: "2Gi"

cat <container-cgroup>.cpuset.cpus
1-2,41-42

 Socket 0 Socket 1
 -------- --------
 Core 0 [0, 40] [20, 60]
 Core 1 [1, 41] [21, 61]
 Core 2 [2, 42] [22, 62]
 Core 3 [3, 43] [23, 63]
 Core 4 [4, 44] [24, 64]
 Core 5 [5, 45] [25, 65]
 Core 6 [6, 46] [26, 66]
 Core 7 [7, 47] [27, 67]
 Core 8 [8, 48] [28, 68]
 …

Yaml example for CPU pinning CPU Layout(2socket, SMT enabled)

Allocated CPUs for container

“sched_setaffinity” usage in DPDK
(pin pThread3 to lCore42)

Process A

pThread0 pThread1

pThread2 pThread3

lCore2 lCore1 lCore41 lCore42

Thread_creation
├─pthread_create
├─pthread_setname_np
└─pthread_setaffinity_np
 └─ sched_setaffinity(tid, cpuset)

SOSCON 2019 How Kubernetes supports NUMA

Resource Manager and Plugins in Kubernetes

• Device Manager

(Component of Kubelet, advertises/allocates extended resources.)

• Device Plugins

(nvidia-gpu-plugin, amd-gpu-plugin, gpu-sharing-plugin, sr-iov-plugin, rdma-device-plugin, etc)

Sequence of extended resource allocation in Kubernetes

Device Plugin

Register

Device Manager

ListWatch

Allocate

Normally, plugins are
gRPC server and
containerized.

Kubelet

Pod AdmitHandler

SOSCON 2019 How Kubernetes supports NUMA

The concept of Topology Manager

• Topology Manager provides the way of NUMA-aware resource allocation for containers at the node level.

• Topology Manager retrieves Topology Hint from Hint Providers

• Topology Manager calculates NUMA node affinity then judges whether admit pod or not by given policy.

(pod admission will be rejected, if chosen policy cannot be satisfied.)

Sequence of Pod admission with Topology Manager

Topology Manager Kubelet

Hints

Admit()

HintProviders

GetTopologyHints()

SyncPod()

admit or reject Pod

CPU Manager,
Device Manager,
…

SOSCON 2019 How Kubernetes supports NUMA

What is Topology Hint and Topology Policy?

• Topology Hint is data structure to represent NUMA nodes of allocable resources as bits.

• Topology Manager collects hints then merges the hints to find best hint.

(Policies share the same merging algorithm in 1.16, each policy will have own one in future release)

• Each policy has own pod admission criteria.

Policy Description

none Do nothing, Topology Manager will not working.

best-effort Calculate best hint then just use it whatever it is

restricted* Reject pod admission if best hint is not preferred hint

single-numa* Reject pod admission if best hint does not fit to single
NUMA node Topology Hint Structure

Topology Policies

//TopologyHint is a struct containing the NUMANodeAffinity for a Container
type TopologyHint struct {
 NUMANodeAffinity bitmask.BitMask
 // Preferred is set to true when the NUMANodeAffinity encodes a preferred
 // allocation for the Container. It is set to false otherwise.
 Preferred bool
}

SOSCON 2019 How Kubernetes supports NUMA

How it Works: Topology Manager (w/single-numa policy)

apiVersion: v1
kind: Pod
metadata:
 name: ntm-sample
spec:
 containers:
 - image: simple-sample
 name: simple-sample
 resources:
 requests:
 cpu: “4"
 memory: "1Gi"
 nvidia.com/gpu: 1
 limits:
 cpu: “4"
 memory: "1Gi"
 nvidia.com/gpu: 1

Yaml example for NTM

Test Case Resource
availability at
scheduler level

Available Resources
on Socket 0

Available
Resources
on Socket 1

Expected Result

Positive Case 1 CPU: 20, GPU: 4 CPU: 10, GPU: 2 CPU: 10, GPU: 2 Socket0,
Socket1

Positive Case 2 CPU: 20, GPU: 2

CPU: 10, GPU: 2 CPU: 10, GPU: 0 Socket0

Positive Case 3 CPU: 7, GPU: 3

CPU: 3, GPU: 2 CPU: 4, GPU: 1 Socket1

Negative Case 1 CPU: 13, GPU: 2

CPU: 3 , GPU 2: CPU: 10, GPU: 0 Admit Rejected

Negative Case 2 CPU: 6, GPU: 4

CPU: 3 , GPU 2: CPU: 3 , GPU 2: Admit Rejected

PodAdmit TestCase

SOSCON 2019 How Kubernetes supports NUMA

Issues(in 1.16)

Issue Description

Kubernetes/Issues/#83476* Unreliable Topology Hint generation when multiple containers in the same pod require alignment.

Kubernetes/PR/#83697 Topology Manager wouldn’t allow pod admit with single-numa policy when any of hint providers had
no NUMA preferences.
(Merged)

Kubernetes/PR/#83492 Topology Manager supports only guaranteed QoS class.
(Merged)

Kubernetes/Issue/#83483 To support “inter-device” topology contstraints(i.e. GPU-direct, Nvlink, RDMA)

Kubernetes/Issues/#83478 Same affinity calculation algorithm for various policies.
(Refactoring has been already started.)

TBD Alignment is limited at the container level, Topology Manager doesn't support Pod level alignment.

SOSCON 2019 How Kubernetes supports NUMA

Helpful Links

Title Link

Cgroup https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

CPU Manager KEP https://github.com/kubernetes/community/blob/master/contributors/design-
proposals/node/cpu-manager.md

Device Manager KEP https://github.com/kubernetes/community/blob/master/contributors/design-
proposals/resource-management/device-plugin.md

Topology Manager KEP https://github.com/kubernetes/enhancements/blob/master/keps/sig-node/0035-20190130-
topology-manager.md

CPU Manager Guide https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies/

Topology Manager Guide https://kubernetes.io/docs/tasks/administer-cluster/topology-manager/

Kubelet
(Container Manager)

https://github.com/kubernetes/kubernetes/tree/master/pkg/kubelet/cm

SOSCON 2019 Kubernetes Contribution

Special Interest Groups(SIGs) are open to new contributors

source: https://github.com/kubernetes/community

SOSCON 2019 Kubernetes Contribution

Hugepages Enhancement

But…What is hugepages?

• Hugepages are literally page which has huge size, typical Linux machine supports two page sizes(2MB, 1GB).

(Default page size is 4kb)

• The concept of hugepages is reducing TLB miss to reduce memory access latency.

(Hugepages also allow high utilization of hardware cache by reducing PageTable Entries.)

• DPDK and Database are usually known as applications which consumes hugepages.

(DPDK is Data Plane Development Kit for packet processing.)

• Kubernetes supports to consume pre-allocated hugepages but it does not support NUMA

and container isolation of hugepages.

SOSCON 2019 Kubernetes Contribution

Hugepages Enhancement

What is the goal of hugepages enhancement?

• Support container isolation of hugepages

• Support multi size hugepages at host and container level.

• Support NUMA aware hugepages management.

SOSCON 2019
SAMSUNG OPEN SOURCE CONFERENCE 2019

THANK YOU

